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Abstract

Anisotropy and heterogeneity of friction and wear can result from anisotropic roughness of engineering surfaces and
from anisotropic and heterogeneous microstructures present in many materials (wood, single crystals, ceramics, com-
posites, layer-lattice materials, polymers, biomaterials, monomolecular layers). In sliding surfaces of some materials,
kinematics of sliding initiates microstructural and frictional changes. This research deals with advanced constitutive
models, which describe evolutions of frictional anisotropy and heterogeneity induced by the sliding kinematics.
First-, second- and higher-order constitutive equations of friction are developed with respect to powers of a sliding path
curvature. The first-order equation of the friction force has two independent variables: sliding velocity unit vector and
its derivative. The second- and higher-order equations are polynomials with respect to odd order tensors composed by
the sliding velocity unit vector and the derivative. In the equations, friction tensors of even orders describe anisotropy
and inhomogeneity of friction and effects associated with the sliding kinematics. The sliding path curvature generates:
(a) an additional resistance to sliding, (b) a constraint force normal to the sliding trajectory. The friction constitutive
equations satisfy the axiom of objectivity. A condition of dissipated energy restricts the friction tensors and the radius
of curvature. Examples illustrate friction descriptions.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There are several physical and mechanical reasons that microstructures in bulk materials and at their
surfaces undergo evolution and reorientation (e.g., from randomly to highly oriented, and from one
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orientation to other). During deformation in the bulk materials, the microstructure evolution is induced
by the following physical phenomena: self-organization, phase transitions, formation of dislocation struc-
tures. During friction and abrasion of solid bodies, besides evolving surface roughness, changes are ob-
served in microstructure of the sliding surfaces. The reorientation of the microstructure at the sliding
surface is affected by the self-organization phenomenon, plastic flow and other structural changes in
the surface and near-surface material. These physical and mechanical phenomena lead to the evolution
of tribological properties at the contact interface. They may reduce (or increase) friction and wear of
materials.

With the aid of pin-on-disc sliding tests, Briscoe and Stolarski (1979, 1981, 1985, 1991) observed essen-
tial changes in wear and friction for some polymeric pins taking into account various curvatures of cir-
cular sliding trajectories. This example illustrates the kinematics-dependent friction. Furthermore,
kinematics of sliding can initiate microstructural and frictional changes in the sliding surfaces of layer-
lattice materials as graphite and molybdenum disulphide, in polycrystalline and single-crystal beryllium
and in polycrystalline magnesium. The microstructure of the sliding surfaces reorients themselves, e.g.,
in the direction of sliding. Privileged sliding directions (trajectories) can have complex shapes in these
cases.

Modern technology stimulates developments of more credible and precise theoretical models of the fric-
tional and wear behaviour that can cover a wide range of materials and sliding conditions. Furthermore,
mathematical models of friction and wear are needed in contemporary computational mechanics and
numerical software. Constructing more realistic models of friction there is required a consideration of
the following influential effects: (a) anisotropy, (b) heterogeneity, (c) the kinematics of sliding, i.e., the slid-
ing path curvature.

Different trials on the modelling of anisotropic phenomena of friction, wear and frictional heat are pre-
sented in the literature. Some theoretical models of anisotropic friction and wear are based on phenome-
nological postulates that are generalizations of commonly observed effects, see Zhivov (1965),
Aleksandrovich et al. (1983), Hornbogen (1986), Cyfka and Hornbogen (1986), Moreau (1988), Alart
(1992), Dmitriev (1993, 2002), Laursen (2002) and Mesfar et al. (2003). There have been attempts to derive
equations of anisotropic friction exploiting a scheme of formulation of constitutive relations in the theory
of elasto-plasticity. Some potentials were postulated whose derivatives defined friction and sliding. Such
trials have been undertaken by Michałowski and Mróz (1978), Mróz and Stupkiewicz (1994), Mróz
(2002), Wriggers (2002) and Hjiaj et al. (2004). Internal state variables are often used in thermodynamical
theories of materials. They are parameters describing changes in the microstructure of materials during
deformations. Two authors have extended this approach into anisotropic tribological phenomena, see
He and Curnier (1993) and Curnier (1996). In this case, two structural tensors (material tensors) have been
used as additional independent variables in the anisotropic friction equations. Therefore, the anisotropic
friction models can be grouped together as follows: (a) models based on phenomenological considerations,
(b) models postulated the analogy between friction and elasto-plasticity, (c) models based upon internal
state variables.

The objective of this study is to model the kinematics dependent frictional anisotropy and non-homo-
geneity in materials and to develop advanced constitutive relations for anisotropic non-homogeneous
friction. In these models, first-, second- and higher-order descriptions are considered with respect to
the sliding path curvature. The friction constitutive equations are in conformity with the objectivity ax-
iom. Restrictions on the friction constitutive relations are imposed by the second law of thermodynamics
(an entropy production inequality). The subject of the study is illustrated by two examples: (a) when the
friction properties (in geometrical terms) form concentric circles in the surface, (b) when the friction
properties form Archimedes spirals in the surface. First trials to describe anisotropic friction with sliding
path curvature effects have been undertaken in our previous studies, see Zmitrowicz (1998, 1999a,b,
2004).
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2. Nature of anisotropic and heterogeneous friction and wear

The anisotropic friction is one whose properties vary with direction of sliding. The heterogeneous fric-
tion has properties that vary from point-to-point through the sliding surface. The anisotropic heteroge-
neous friction at a given contact point is dependent on the sliding direction and on the location of the
point within the sliding area.

From the physical point of view, anisotropy of friction and wear can result from the roughness anisot-
ropy of contacting surfaces and from anisotropy and heterogeneity present in many materials due to their
particular structure. Anisotropic and non-homogeneous phenomena of friction, wear and frictional heat
take place in the contact area of every rubbing pair built up by materials with heterogeneous, multiphase
or anisotropic microstructure. The degree of anisotropy and inhomogeneity varies for different materials.
Notice that there are two main reasons of friction heterogeneity: (a) evolving sliding surface microstructure
induced by the kinematics of sliding, (b) non-homogeneity present in the surface of materials with a com-
plex microstructure (the surface can have a mosaic structure, since different components are exposed at dif-
ferent points on the surface).

Short reviews of the literature devoted to experimental investigations of anisotropic friction and wear
have been given in our previous papers (see Zmitrowicz, 1989, 1992a, 1993, 1995, 1999a). The present chap-
ter of the study is concerned with several historical remarks and with a review of recently published exper-
imental results. Friction anisotropy effects are shown in relations to particular materials and properties at
their surfaces. Both types of anisotropic friction, i.e., independent and dependent on the kinematics, are
reviewed in the chapter.

2.1. Early experimental measurements

Experimental measurements of friction anisotropy have a very long history. At first the anisotropic nat-
ure of hardness was discovered. Anisotropic friction and wear of various materials correspond to the aniso-
tropic hardness. Huygens (1690) was the first who investigated the anisotropic hardness of the Iceland spar
(i.e., transparent crystals of calcite). With the aid of a knife scraping along the crystal natural surfaces, he
observed different resistances to scraping and polishing in different directions. A higher resistance to scrap-
ing was in the direction of the higher hardness. This way Huygens recognized main crystallographic direc-
tions of the crystals.

Exner (1873) measured the hardness anisotropy on crystal surfaces for 17th various minerals (rock-salt,
fluorite, silvan, sphalerite, alum, barite, calcite, mica, gypsum and other). He observed: (a) different hard-
ness for various crystals, (b) different hardness on various surfaces of the given crystal, (c) different hardness
in various directions on the given crystal surface. In some cases, Exner observed differences in the hardness
in the given direction depending on the sign of the direction (positive and negative directions).

Coulomb, Morin and Conti were the first who investigated the friction anisotropy in wood taking into
account an orientation of the sliding direction with respect to wood fibers. Wood is the strongly anisotropic
material, and its fibers are spread along straight or curved lines. Its physical properties vary along the fol-
lowing principal anisotropy axes: radial and tangential with respect to annual growth rings, longitudinal
and transverse relative to the fibers, see Fig. 1. The earliest extensive investigations of the friction of wood
were promoted by applications in various branches of ancient engineering and technology, e.g., in mechan-
ical, naval and vehicle engineering. Wood was the most used material in the construction of machines in the
past; iron was utilized for reinforcement or for resisting wear.

Coulomb (1785) studied the friction of sliding between two pieces of seasoned wood (oak on oak; oak on
pine; pine on pine; elm on elm) and between wood and metals with or without lubricating coatings. The
wood samples slid in the given direction in two different manners: (a) wood fibers were parallel in both
specimens, (b) wood fibers were transversal in one specimen with respect to other. Coulomb concluded that



Fig. 1. Principal directions of anisotropy specified in wood.
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heterogeneous surfaces, such as wood, provide different friction results in comparison with homogeneous
surfaces, such as metals.

Morin (1832, 1834, 1835) investigated the friction parallel and transversal to the wood fibers in the
following sorts of wood: oak on oak; oak on elm; ash-tree, pine, beech, sorb, wild pear and hornbeam
on oak; and between wood and metals. Conti (1875a,b) measured the kinetic friction of wood and other
materials. The specimens were allowing to slide down a very large inclined plane. Measurements of friction
in wood were carried out in oak, elm, poplar—parallel and transversal to the fibers—sliding against the cast
iron.

The friction coefficients measured by Coulomb were tabulated and incorporated into 19th century hand-
books of engineering by Eytelwein (1808) and Gerstner von (1831). Tables of values of Morin�s friction
coefficients were published in his mechanics handbooks (Morin, 1843, 1846) known also from 19th century
translations into German (Morin, 1844) and into Polish (Morin, 1858, 1859). In English, tables having a
summary of Morin�s friction experiments were published by Lanza (1901). Effects of friction anisotropy
in wood are marked in all these tables. von Mises (1901–1908) in a review study cited the anisotropic fric-
tion coefficients of wood from investigations of Coulomb, Morin and Conti.

Recently Guan et al. (1983), Tong et al. (1998), Vaz and Fortes (1998) and Ohtani et al. (2003) investi-
gated anisotropic friction and wear of the following sorts of wood: common Swedish wood (pine, spruce,
oak), cork, bamboo and Katsura wood during rubbing with steel, glass, grey iron, abrasive paper and
wood. In these recent experiments, the friction anisotropy in wood has been a more or less testified.

2.2. Rough engineering surfaces

Most engineering surfaces are rough and friction is known to be very sensitive to surface roughness. The
directionality in friction is sometimes observed on rough surfaces where ‘‘interlocking’’ surface asperities
lead to anisotropy effects. In general, the dependence of friction on the sliding direction arises from the spe-
cific surface roughness.
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An anisotropic surface roughness is a structure in which highs and hollows in the surface are clearly ori-
ented. Most machined surfaces of materials (i.e., surfaces obtained by cutting, grinding, finishing, super-fin-
ishing, etc.) have a definite surface roughness pattern (texture) unique to a type of machining operation.
For example, there are: longitudinally oriented pattern, transversely oriented roughness pattern, oblique
roughness pattern forming an inclined angle with respect to the sliding direction, circular relative to the
center of the surface, radial relative to the center of the surface, etc. The surface pattern produced by
machining or grinding may be modelled, to a some approximation, by a number of basic geometrical fea-
tures such as straight lines, circles (including secants), polygons, curves, spirals, etc. Notice that in the case
of the complex geometry of machining marks in the surface, the anisotropic friction depends on the sliding
trajectory. An isotropic surface topography consists of a system of asperities without any specified
orientation.

Rough surfaces of metals, polymers and other materials were investigated in the subject literature. Dif-
ferences in friction coefficients were observed for the sliding parallel and perpendicular to the machining
marks. Chvedov et al. (2003) attributed frictional anisotropy of a rolled aluminum sheet to the anisotropic
surface topography. Anisotropic wear related to the anisotropic surface roughness was experimentally ob-
served by Horng et al. (1994), Wang et al. (1997), Tarasov (1999a,b), Dizdar (2000) and Franklin (2001).
The results show that surfaces with the transversely oriented pattern relative to the direction of sliding cause
more initial surface damage than surfaces with the longitudinally oriented texture. However, the trans-
versely oriented pattern can be helpful in lubricated contacts (e.g., in sliding bearings, in drawing pro-
cesses), see Horng et al. (1994), Dizdar (2000) and Chvedov et al. (2003).

Schouterden and Lairson (1999) investigated anisotropy in friction and wear of amorphous carbon thin
coatings on surfaces for hard disc applications. Friction and wear in the directions parallel and perpendic-
ular to wear tracks were compared. Observed anisotropy effects were induced by the anisotropic topogra-
phy of the wear tracks.

In environmental and geophysical large-scale observations, natural surfaces such as glacier beds are
rough surfaces. Furthermore, bed topographies of the glaciers are anisotropic. This means that the bed
has definite topographical irregularities. They can be treated like systems of hills and valleys in the macro-
scale. The glaciers slide and rub at their rough beds. Various laws of anisotropic friction and anisotropic
sliding of the glaciers were studied in some papers, see Zmitrowicz (2003).

2.3. Single crystals of materials

Anisotropy is an intrinsic property of all crystalline solids. A type of atoms and an arrangement of
these atoms in various directions in a crystal lattice contribute to the anisotropy effects. Therefore, phys-
ical, chemical and mechanical properties vary in different crystallographic planes and directions. Aniso-
tropic friction, wear and hardness in crystals can be of two kinds. First, there is the variation in friction
and wear when the sliding surface is changed from one crystal plane to another. Secondly, there is the
variation in friction and wear when the sliding direction is changed on the given crystal plane (Bhushan,
1995).

Bowden and Tabor (1956, 1958, 1964) and Tolansky (1960) reported early experimental studies devoted
to the anisotropic friction and the directional abrasion resistance on faces of diamonds. The coefficient of
friction of diamond on diamond is strongly dependent on the sliding direction, varying by up to a factor of
three on some crystal faces. Directions of the high friction are also the directions of the easy abrasion and
polishing of the diamond. In the directions of the low friction, it is difficult to abrade the diamond (Bowden
and Tabor, 1958, 1964). On the given diamond plane, there are both easier and harder polishing directions,
see Fig. 2. For example, in the case of the (001) face of diamond, friction anisotropy shows four-fold sym-
metry (Bowden and Tabor, 1956). Recent experiments on anisotropic friction and wear in diamonds were
carried out by Brookes et al. (1995) and Grillo et al. (2000).



Fig. 2. Directional effects of friction and abrasion of diamond; l1 < l2, see Bowden and Tabor (1956).
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Anisotropic friction between single crystal surfaces of muscovite mica have been measured by Hirano
et al. (1991) and Hirano and Shinjo (1993). The changes in the frictional forces had six-fold symmetry,
reflecting the hexagonal symmetry of the crystal surfaces (cleavage surfaces). Anisotropy of friction in crys-
tals of the triglycine sulfate was investigated by Bluhm et al. (1995). Anisotropy in friction of single crystals
of ice was observed by Tusima (1972). The friction coefficient was 0.034 in the prismatic plane and 0.020 in
the basal plane of the ice crystal. Ko and Gellman (2000) and Gellman and Ko (2001) measured friction
anisotropy between a pair of nickel single crystal surfaces Ni(100). Mancinelli and Gellman (2004) studied
anisotropic friction between two Pd(1 00) crystal surfaces. They suggested that friction anisotropy arises
from the bulk mechanical properties of the crystals.

Flom and Komanduri (2002) investigated the effect of crystal orientation and direction of sliding on fric-
tion and on wear tracks formed in single crystals under sliding a hard indenter. Anisotropy in friction and
wear was observed in crystals of copper, aluminum, iron and cadmium. With the aid of wear anisotropy in
single crystal alumina (sapphire), Ravikiran (2000a,b) explained wear mechanism in polycrystalline alu-
mina, where grains were randomly oriented towards the sliding plane.

In the crystals, a bulk temperature in a large range does not change significantly anisotropy of friction.
Experiments carried out by Riesz and Weber (1964) demonstrated that the orientation of clean sapphire
surfaces affects friction to a considerable extent below 1300 �C. At a temperature above 1300 �C orientation
effects were slight, i.e., the friction anisotropy vanished at high temperature. The melting temperature of
sapphire is 2040 �C. Kanagawa et al. (2003) investigated the effect of temperature on wear for two crystal
orientations of Mn–Zn ferrite. It was found that the wear rate increased with decrease of temperature in the
range from �20 �C to 40 �C. The anisotropy effects are strong in low temperatures.

Scott and Wilman (1958) observed surface reorientation caused by unidirectional abrasion on surfaces of
polycrystalline and single-crystal beryllium and polycrystalline magnesium. The reorientation of textures
took place in a thin deformed near-surface layer. The surface subgrains had a characteristic orientation,
which coincided with the abrasion direction, and it was independent on the orientation of the parent grains.
This is the kinematics dependent anisotropic friction and wear.

Curved dislocation structures in the single crystals of the alloys Cu–Al were observed after plastic defor-
mations by Prinz et al. (1981). A radius of curvature of a dislocation segment was inversely proportional to
stresses (external, internal and friction stresses) acting on it. Different friction stresses were on screw and
edge dislocations.
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2.4. Ceramic materials

Friction, wear and hardness of ceramics are anisotropic and relate to the crystal structure (crystallo-
graphic planes and directions). Anisotropic friction and wear in silicon carbide and other materials were
investigated by Buckley and Miyoshi (1984). Miyoshi and Buckley (1982) and Buckley and Miyoshi
(1984) conducted experiments with silicon carbide surfaces in contact with various metals and SiC itself.
An examination of wear tracts and wear debris indicated that they were influenced by the crystallographic
orientation. Gatzen and Beck (2003) observed friction anisotropy in the single crystal of silicon and be-
tween two silicon surfaces. In (111) face of the silicon crystal, friction showed six-fold symmetry. In this
case, the friction force varied by more than 50% depending on the sliding direction. Weick and Bhushan
(2001) reviewed anisotropic friction characteristics of polycrystalline silicon used for micro-electromechan-
ical systems.

In the growth process of the ceramic crystals, screw dislocations can be formed. Due to this, so called
growth spirals are observed on the crystal faces. Tolansky (1968) studied various growth spirals on the crys-
tal faces of the silicon carbide.

2.5. Composite materials

An addition of reinforcements (fibers, fillers, particles, whiskers, etc.) is a method for increasing the bulk
mechanical/physical properties in many materials. There are three groups of microstructures of composites:
group first has various randomly oriented fiber or cell arrangements, group second consists of nearly uni-
directionally oriented short (discontinuous) or long (continuous) reinforcement fibers, group third is lam-
inate. If the short fibers are in the form of non-spherical particles (e.g., plate-like), they can also be
directionally oriented in the matrix.

The composites are all heterogeneous. The properties at the given point in the composite can be very
different depending on whether it falls in the matrix or one of the fibers. This is because the two primary
phases, fiber and matrix, have radically different properties. Most of the composites are anisotropic. It
means that the physical and mechanical characteristics of the reinforced materials depend strongly on
the fiber orientation, and the properties vary with the direction.

Anisotropic friction and wear of the composites were examined experimentally in numerous studies for
various matrices (polymers, ceramics, glasses, light metals such as aluminum, magnesium, titanium and
their alloys), and for different reinforcements (carbon or graphite, glass, silicon carbide, aluminum oxide,
stainless steel, textile and polymeric fibers). Anisotropic friction and wear characteristics were reported in:
(a) metal–matrix composites by Eliezer et al. (1978, 1979), Arikan and Murphy (1991), Nayeb-Hashemi
et al. (1991), Saka et al. (1992), Belmonte et al. (1996), Sahin and Murphy (1998) and Watanabe et al.
(1999); (b) polymeric matrix composites by Glitrow and Lancaster (1967), Tsukizoe and Ohmae (1975),
Sung and Suh (1979), Chang (1983), Roberts (1985), Cyfka and Hornbogen (1986), Ciring et al. (1988),
Jacobs et al. (1990), Shim and Kwon (1992), Friedrich (1993), Tripathy and Furey (1993), El-Sayed
et al. (1995), El-Tayeb and Mostafa (1996), Horaguchi et al. (1996), Liang et al. (1996), Ovaert (1997),
Ho and Jeng (1997), Xiao et al. (1998), Schön (2000), Franklin (2001) and Yamamoto and Hashimoto
(2004); (c) ceramic- and carbon-matrix composites by Friedrich (1993), Liang et al. (1999a,b) and Hutton
et al. (2001); (d) glass- and rubber-matrix composites by Minford and Prewo (1985), Wada and Uchiyama
(1993), Lu et al. (1993) and Zum Gahr and Voelker (1999). It is seen that, the case of oriented ‘‘hard’’ fibers
in ‘‘soft’’ polymeric matrices is of most interest from the point of view of the tribological performance.

The friction and wear of the composites are greatly influenced by the fiber orientation with respect to the
sliding direction. It was found that the friction coefficients were lower when the fibers were oriented parallel
rather than perpendicular to the sliding direction on composite surfaces. Furthermore, experimental results
suggest, that abrasive wear properties of the composites are best when the fibers are normal to the sliding



Fig. 3. Principal sliding directions in composites and friction anisotropy; l1 < l2 < l3, see Sung and Suh (1979) and Tripathy and
Furey (1993).
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surfaces (so called ‘‘normal orientation’’). The composites exhibit the greatest wear when the fiber align-
ment is in the plane of contact and perpendicular to the sliding direction (‘‘transverse orientation’’), see
Fig. 3. Between the two extremes in the wear resistance is the ‘‘longitudinal orientation’’, where the fiber
alignment is in the contact plane and parallel to the sliding direction. Continuous, unidirectional compos-
ites show the strongest mechanical properties in the fiber direction. However, the best tribological proper-
ties of the composites in the sliding contacts would be not compatible with the best mechanical properties.
When the fibers are oriented normal to the contact, then a fiber–matrix interface damage can propagate
deep into the material of the composite. When the fibers lie in the plane of the sliding surface the damage
propagation would be minimized.

In addition to friction and wear, the friction-generated surface temperature is an equally important
parameter in technology. A dependence of the surface temperature with respect to the sliding direction
was investigated in the composites by Chang (1983), Shim and Kwon (1992) and Tripathy and Furey
(1993). Differences in the surface temperature or a temperature just below the sliding surface with respect
to the fiber orientations in the sliding surface were found by Chang (1983) and Shim and Kwon (1992).

2.6. Layer-lattice materials

Self-lubricating layered (or lamellar) materials such as graphite and molybdenum disulphide (MoS2) are
being used to increase a service life of machine components operating in extreme conditions. Both friction
and wear of the layer-lattice materials are affected considerably by the orientation, i.e., they have preferen-
tial sliding directions, see Lancaster (1966). The polycrystalline graphite is the agglomerate of monocrystals
with a random orientation. When rubbed on surfaces (e.g., surfaces of metals), there is a rapid transition
from the randomly oriented crystallites of graphite and molybdenum disulphide to the orientation with the
crystallites nearly parallel to the sliding surface (the self-organization phenomenon), see Fig. 4. This leads
to the friction coefficient evolution, and it facilitates sliding (low friction) in graphite (see Senouci et al.,
1999) and in MoS2 (see Martin et al., 1994). These are examples of the kinematics dependent anisotropic
friction. Rabinowicz (1995) reported that graphite and molybdenum disulphide have low friction coeffi-
cients (about 0.1) when sliding takes place on a face parallel to the sheet direction but much higher friction
coefficient (about 0.3) when sliding takes place perpendicular to the face. Notice that the graphite fibers
used in the composites are strongly anisotropic; their axial and transverse mechanical and tribological prop-
erties are different, see Senouci et al. (1999).

The similar phenomenon of reorientation of particles was observed in ‘‘wet’’ contacts with molybdenum
disulphide additives in lubrication oils (Persson, 2000). The MoS2 particles consist of small flakes some



Fig. 5. The reorientation of MoS2 flakes due to a shearing in a thin lubricant film (initial and final orientations).

Fig. 4. The reorientation of graphite crystallites in a sliding contact (static and kinetic orientations).
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thousand monolayers thick. At low shear rate, the flakes are randomly oriented, but when the shear rate
increases above some critical value the flakes orient themselves in the state which corresponds to the least
dissipation energy, where the crystal planes are entirely composed of streamlines of the fluid motion (Pers-
son, 2000), see Fig. 5.

2.7. Polymers

Macromolecular polymers are repeated combinations of numerous simple chemical molecules (mono-
mers) produced by cyclic repetition in the fabrication process. Usually, randomly distributed macromole-
cules do not have a specified orientation. However, sometimes the molecular chains of the polymeric
materials can be aligned in one direction, so that the structure may be very highly anisotropic. In this case
there is a difference in the friction for the sliding parallel and perpendicular to the chain axis. For example,
the friction coefficient of PTFE was higher when the sliding occurs across the molecules than along them,
see Tabor and Williams (1961) and Bowden and Tabor (1958, 1964).

Polymers undergo morphological transformations, and they transform the amorphous phase into semi-
crystalline phase. For instance, the reorientation of the microstructure can take place under large deforma-
tions (or at high temperature). This leads to anisotropic properties of the polymeric material. Anisotropy of
friction and wear was observed in polymeric solids by Kajiyama et al. (1996) and in polymer single crystals
by Pearce and Vancso (1998).

Polytetrafluoroethylene (PTFE) and high density polyethylene (HDPE) polymers are sensitive to the
orientation of their molecular chains with respect to the sliding direction. In pin-on-disc tests, Briscoe
and Stolarski (1979, 1981, 1985, 1991) observed that a rate of wear of the polymers was a function of



Fig. 6. Changes in wear and friction observed in some polymers for various radii of circular sliding trajectories in pin-on-disc tests, see
Briscoe and Stolarski (1991).
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the curvature of the circular trajectories, which the polymer pin described on the disc surface. By changing a
radius of the circular path different wear rates were observed, see Fig. 6. The authors of the experiment
varied the radius of rotation of the pin and the angular velocity of the disc. Therefore, the sliding conditions
of the pin against the disc were maintained constant, i.e., the normal pressure and a linear sliding velocity
were fixed.

In the opinion of Briscoe and Stolarski, the investigated polymers wear out by a creation of ‘‘transferred
films highly oriented’’ in the direction of sliding, and the sliding occurs between oriented fibrils. Briscoe and
Stolarski thought that an increase of the curvature of the sliding trajectories, and the resulting increase of
reorientation of molecular chains in the contact area are responsible for the observed behaviour of the poly-
mers. In the opinion of Briscoe and Stolarski, complex kinematics of the relative sliding between the poly-
mer pin and the rotating disc must be taken into account. This is the example of the kinematics dependent
anisotropic and heterogeneous friction and wear.

2.8. Friction asymmetry (non-centrosymmetric friction)

Some researchers refer friction asymmetry to a change in friction when the sliding direction is changed
by 180�. The reversal in the direction of sliding may lead to different friction. Then, there is the different
friction for sliding forward and reverse. In our nomenclature (see Zmitrowicz, 1992a,b), an anisotropic
friction without central symmetry describes the variations in the friction force when changing the sliding
direction by angle 180�. The simplest intuitive example is a brushed carpet having low resistance when
sliding in the direction of unidirectional oriented fibers and high resistance in the opposite direction
(‘‘cat fur’’ effect).

The non-centrosymmetric anisotropic friction were observed in aluminum crystals on a face with three-
fold symmetry (Flom and Komanduri, 2002) and in triglycine sulfate (Bluhm et al., 1995). The friction
asymmetries were found in thin monomolecular layers with the known microstructures: in Langmuir–
Blodgett films on mica (Gourdon et al., 1997), in a lipid monolayer of mica (Liley et al., 1998), in polydi-
acetylene monolayer films (Carpick et al., 1999) and in monolayers of glycerol ester (Hisada and Knobler,



Fig. 7. The reversal in the direction of sliding leads to friction asymmetry in scale-like microstructure; l1 < l2.
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2002). In experiments carried out by Kadijk and Broese van Groenou (1990), the anisotropic wear resis-
tance changed in a video tape recorder with a head orientation and a running direction of the tape. It
was noted that the reversal of the running direction of the tape leads to variations in the wear anisotropy
of the manganese-zinc ferrite head of a factor 30.

Many biomaterials, e.g., all animal fibers (hair, nails, horn, hides), have very fine scale-like microstruc-
tures that cover their surfaces. The reversal in the direction of sliding leads to different friction. The friction
from the tip of the scale to the root (that is against the scales) is greater than the friction from the root to the
tip. The ratchet-like action of the scales induces low friction for forward motion and high friction for back-
ward sliding (Bowden and Tabor, 1956, 1958), see Fig. 7. The friction asymmetry has been observed in
snake skin specimens having the scale-like microstructure by Hazel et al. (1999); there was two-three times
higher friction for the backward motion.

2.9. Friction anisotropy on micro/nano-scales

Anisotropy in friction and wear on the micro-scale is the norm. Experimental observations of aniso-
tropic friction and wear at the atomic and nanometer scales were reported in the literature for various mate-
rials, for example: in an organic bilayer structure by Overney et al. (1994), in polymeric solids by Kajiyama
et al. (1996), in crystals of molybdenum oxide sliding on molybdenum disulfide by Sheehan and Lieber
(1996), in Langmuir–Blodgett films by Gourdon et al. (1997), in the lipid monolayer by Liley et al.
(1998), in the snake skin by Hazel et al. (1999), in carbon thin films for hard discs by Schouterden and
Lairson (1999), in glycerol ester monolayers by Hisada and Knobler (2002). Frictional anisotropy on the
nano-scale has been observed at the surface of polymer single crystal by Pearce and Vancso (1998). The
polymer chains within the single crystal were oriented, and the frictional anisotropy reflected this intrinsic
property of the crystal. Carpick et al. (1999) examined strong friction anisotropy (300%) in monolayer films
of polydiacetylenes. This effect resulted from anisotropy in mechanical properties, i.e., from an anisotropic
stiffness of the film. Dickrell et al. (2005) observed that friction was a function of a nanotube orientation in
films composed by multi-walled carbon nanotubes. High friction coefficient (l = 0.795) was when the nano-
tubes aligned normal to the contact plane and low friction coefficient (l = 0.090) when the nanotubes laid
flat in the contact plane.
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In the experiments, micromechanical techniques (atomic force microscopy and lateral force microscopy)
were used to measure the friction forces acting between a specimen surface and a cantilever beam with a
sharp contact tip at the end. Bending and torsion of the cantilever occur as a result of the contact forces
at the tip. Different torsion of the cantilever during forward and reverse scanning along the same line indi-
cates friction asymmetry (non-centrosymmetric friction), see Gourdon et al. (1997).

Molecular dynamics simulations were applied by Komanduri et al. (2000) to study the anisotropy with
respect to the indentation hardness, scratch hardness and friction coefficient of aluminum single crystals.
The molecular dynamics methods were used to investigate friction anisotropy in a hexagonally packed or-
ganic monolayer by Ohzono and Fujihira (2000). With the aid of the molecular dynamics, Qi et al. (2002)
studied friction anisotropy between two Ni(100) surfaces.

Micro/nano friction experiments were reviewed by Weick and Bhushan (2001). There was considered the
role of the crystal orientation and grain boundaries on frictional anisotropy in various crystalline materials.
3. First-order descriptions of anisotropic and heterogeneous friction

The sliding trajectory of a material point in the sliding surface in the range of time I = (t0, te) is described
by
I 3 t! xðtÞ 2 E2; ð1Þ

where x is the radius vector of the material point P with respect to the current configuration observer Oxy, t

is time, E2 ¼ R�R is the two-dimensional Euclidean vector space, R is the space of real numbers. An arc
length parameter s and a one-dimensional parameterization of the plane curve (the sliding trajectory) can
be introduced with the aid of the following relations:
sðtÞ ¼
Z t

t0

jVðtÞjds; I 3 t! sðtÞ 2 R. ð2Þ
The sliding velocity vector, its value and a unit vector tangent to the trajectory are given by
V ¼ dx

dt
¼ dx

ds
ds
dt
¼ vV ; ð3Þ

V � jVj ¼ ds
dt
; v ¼ dx

ds
. ð4Þ
According to the Frenet–Serret first formula, we have
dv

ds
¼ n

q
; ð5Þ
where n is the unit vector normal to the trajectory (v Æ n = 0) and q is the sliding path curvature radius, 1/q is
called the curvature, see Fig. 8.

Constitutive equations governing the phenomenon of inhomogeneous anisotropic friction we create in
the frame of Amontons–Coulomb friction law. According to the phenomenological definition of dry fric-
tion as the resistance to sliding, two necessary conditions must be fulfilled: (a) contact of two solids (normal
pressure), (b) sliding of one body over another (sliding velocity). That phenomenological definition focuses
on commonly observed effects.

In the continuum mechanics and thermodynamics, it is customary to consider kinematical quantities as
independent variables of the constitutive equations and dynamical quantities as forces, stresses, etc. as
dependent ones. By the friction constitutive equation we mean a relation between the friction force vector
t and the normal pressure N, the unit vector of the sliding velocity v and its derivative (5), i.e.,



Fig. 8. The sliding trajectory of a material point in a plane with heterogeneous friction properties, which form concentric circles.
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t ¼ t N ; v;
n

q

� �
¼ �Nf v;

n

q

� �
; f : E2 � E2 ! E2. ð6Þ
In general, friction anisotropy refers to variations with respect to the sliding direction of the following
quantities: (a) the friction coefficient, (b) the inclination angle between the friction force and the sliding
direction, see Hamel (1949) and Rabinowicz (1957). The anisotropic friction coefficient la and the inclina-
tion angle b of the friction force for any sliding direction can be obtained from the relations as follows:
la ¼ N�1jtj; ð7Þ

sin b ¼ t � n
jtj ;

p
2
6 b 6

p
2

. ð8Þ
Coefficients of the friction force components collinear with the sliding direction and normal to the sliding
direction (see Fig. 9) are given by
lka ¼ �N�1t � v; l?a ¼ N�1t � n. ð9Þ

For vanishing sliding velocity (case of sticking) the contact force is a reactive force governed by the equa-
tion of equilibrium (case of statics).

In the simples case, the friction force function (6) can be defined as a sum of two single-term polynomi-
als, i.e.,
t ¼ �N C1vþ E1

n

q

� �
; ð10Þ
with the following second-order friction tensors:
C1ðXÞ ¼ Cijki � kj; i; j ¼ 1; 2; Cij ¼ const; ki ¼ kiðXÞ; C1 2T2 ¼ E2 � E2; ð11Þ
E1 ¼ Eklek � el; k; l ¼ 1; 2; Ekl 6¼ const; fe1; e2g � fv; ng; E1 2T2; ð12Þ



Fig. 9. The anisotropic friction force t acting on a material point O and its components, collinear tk and transverse t? with respect to
the sliding direction v, where av 2 h0,2pi and b 2 h�p/2,p/2i.
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where T2 is the space being the tensor product of two vector spaces E2, {k1,k2} is the basis of unit vectors
adequately oriented with respect to privileged directions of inhomogeneous friction (see Fig. 8), X is the
position vector of the material point with respect to the reference configuration observer, since any heter-
ogeneous friction is described by a function of positions. The components Ekl can depend on the sliding
velocity value V taken as a parameter. If the sliding path is a straight line, then the curvature vanishes
(1/q = 0), and the dependence between the friction force t and dv/ds also vanishes. The friction equation
(10) satisfies the objectivity axiom, see Zmitrowicz (1999a).

The basis {k1,k2} can be transformed into the basis {v,n} with the aid of the following rule:
½k1; k2�T ¼ B½v; n�T; ð13Þ

where [B] = [Bij] i, j = 1,2, is a transformation matrix, B = B(X). The coefficients of the transformation ma-
trix are defined by
B11 ¼ k1 � v; B12 ¼ k1 � n;
B21 ¼ k2 � v; B22 ¼ k2 � n.

ð14Þ
Subsequent terms in the constitutive equation (10) play the following roles: t is the response; N, v and n/q
are causes; C1 and E1 are parametric tensors, i.e., the tensors C1 and E1 are not arguments of the consti-
tutive polynomial, they are coefficients of the constitutive equation. C1 defines frictional anisotropy and
inhomogeneity at the contact. E1 defines effects associated with the sliding kinematics.

It is reasonable to include an analysis of symmetry properties in friction investigations. Restrictions on
the friction tensor C1 result from the symmetry conditions. In general, the symmetry of an object is the set
of all transformations of the object into itself, which leaves the object invariant. Isotropic, orthotropic,
anisotropic, axi-symmetric, and uni-directional types of friction anisotropy can be distinguished with the
aid of the friction tensor C1 and symmetry groups, see Table 1. The symmetry group GðC1Þ of the friction
tensor C1 is a subgroup of the full orthogonal group and it satisfies the following relation:



Table 1
Linear models of anisotropic friction

Type of friction
anisotropy

Symmetry
elements

Restrictions on the
friction tensor C1

Coefficients
of the tensor C1

Restrictions
on the coefficients

Isotropic O C1 = C111 C11 = C22, C12 = C21 = 0 C11 P 0
Orthotropic ±1, Jm1

, Jm2
C1 ¼ CT

1 C11,C22, C12 = C21 C11 P 0,
C11C22 � (C12)2 P 0

Anisotropic ±1 None C11, C12, C21, C22 C11 P 0,
C11C22 � C12C21 P 0

Axisymmetric R/
n , / 2 h0,2pi C1CT

1 ¼ ½ðC11Þ2 þ ðC12Þ2�1 C11 = C22, C12 = � C21 C11 P 0, C12 2 R

Unidirectional ±1, Jm1
, Jm2

detC1 = 0 C11 = C12 = C21 = C22 C11 P 0
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GðC1Þ ¼ R : R 2 O; �
2

1
R

� �
� C1 ¼ C1

� �
; ð15Þ
where R is the orthogonal tensor, O is the full orthogonal group and �
2

1
denotes the following contraction:� �
�
2

1
R � C1 ¼ CijRki � Rkj. ð16Þ
The types of friction anisotropy described with the aid of the second-order tensor C1 are summarized in
Table 1. There are the following elements of the symmetry groups: +1—identity transformation, �1—
inversion, Jm1

, Jm2
—mirror reflections with respect to the principal directions of friction m1 and m2,

R/
n —rotations about any axis n normal to the contact area, where / is the angle of rotations. The principal

directions of friction are such directions of sliding where the friction force vector t and the sliding velocity
unit vector v are collinear.

Restrictions on the friction tensor coefficients shown in Table 1 follow from the second law of thermo-
dynamics. This says that a power of the friction force is non-positive, i.e.,
P ¼ t � V 6 0; 8V 2 E2. ð17Þ

Let us consider the term independent on the sliding path curvature in the constitutive equation (10). After
substitution of the first term in the friction equation (10) into (17), we get the restriction on the tensor C1, i.e.,
vTC1v P 0. ð18Þ

Hence the friction tensor C1 is positive-definite.

Taking the following representation of the second order tensor E1:
½E1� ¼
E11 E12

E21 E22

 !
; ð19Þ
the contraction of the tensor E1 and the vector of the independent variable n/q gives the following:
E1

n

q
¼ ðE11v� vþ E12v� nþ E21n� vþ E22n� nÞ n

q
¼ E12

q
vþ E22

q
n. ð20Þ
Therefore, the sliding path curvature generates: (a) dissipative type component, i.e., an additional friction
(E12/q) and (b) gyroscopic type component, i.e., a sliding constraint (E22/q).

Let us consider non-homogeneous friction properties, which form, in the contact surface: (a) concentric
circles, (b) set of radii or rays emanating from the origin, see Zmitrowicz (1999a,b). Specific forms of the
friction tensors are presented in Table 2. k1 and C11 are associated with the tangent to the concentric circles
in the case of k1 and with the sliding along the circles in the case of C11. k2 and C22 are defined for the slid-
ing along the radii of the concentric circles. E12 is the coefficient of constraints imposed on the motion in the



Table 2
Heterogeneous anisotropic friction in the first-order description

Type of friction
heterogeneity

Friction tensors C1, E1 Coefficients of the
friction tensors

Restrictions on the
coefficients and the radius

Concentric circles C1 = C11k1k1 + C22k2k2 C11, C22 vTC1v P 0, vTE1n P 0, q 2 Rþ or

E1 = E12vn + E22nn E12, E22 vTC1v > 0, vTE1n 6 0, q P � vTE1n

vTC1v
Rays emanating
from the origin

C1 = C22k1k1 + C11k2k2 C11, C22 vTC1v P 0, q =1
E1-arbitrary

4422 A. Zmitrowicz / International Journal of Solids and Structures 43 (2006) 4407–4451
direction tangent to the sliding path, E22 is the coefficient of constraints imposed on the motion in the direc-
tion normal to the sliding path. The second law of thermodynamics (17) imposes restrictions on the coef-
ficients of the friction tensors C1 and E1 and the parameter q, see Table 2 and Zmitrowicz (1999a).

In this particular case, the tensors C1 and E1 are defined locally, and the tensor C1 has orthotropic fric-
tion properties. The orthotropy group contains four symmetry elements: identity, inversion and two mirror
reflections with respect to principal directions k1 and k2, i.e.,
GðC1Þ ¼ f�1; Jk1
; Jk2
g. ð21Þ
The symmetry properties of the tensor E1 do not play an important role, and the following anisotropic sym-
metry can be assumed:
GðE1Þ ¼ f�1g. ð22Þ
For E22 = const the analyzed friction has the axial symmetry, and its group of symmetry GðtÞ contains rota-
tions about the normal to the contact area crossing the center of the concentric circles C, i.e.,
fR/
c g 	 GðtÞ; / 2 h0; 2pi. ð23Þ
The independent variable n/q of the constitutive equation depends on the position. Therefore, the analyzed
friction has no symmetry with respect to translations d 2 h0,1) along any axis
fTd; d ¼ 0g 	 GðtÞ; ð24Þ
where Td is the translation vector along any axis in E2. Translations along arcs of the concentric circles can
be introduced. These transformations are equivalent to the rotations, and they are elements of the symme-
try group fR/

c g.
Let the sliding trajectory be a circle of the radius q = r attached to the center of concentric circles, see

Fig. 8. Taking the friction tensors for the concentric circles of the form presented in Table 2, we obtain from
(10) the following friction force for the sliding along the concentric circles:
t ¼ �N C11 þ E12

r

� �
vþ E22

r
n

� �
. ð25Þ
Then, the coefficient of the friction force component collinear with the sliding direction v is given by
lkaðrÞ ¼ C11 þ E12

r
; ð26Þ
where C11 > 0, E12 2 R. We can distinguish positive and negative additional friction taking into account a
sign of the coefficient E12. If E12 > 0 (positive additional friction), the friction coefficient decreases when r

increases. If E12 < 0 (negative additional friction), then the friction coefficient increases as r also increases.
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4. Estimations of the parameters in the first-order descriptions using Briscoe and Stolarski

experimental results

Friction process always involves wear of the sliding surfaces. At the macroscopic level wear is simply
removal of material from the sliding solid bodies, and it can be described with the aid of a wear velocity.
The wear velocity v+ is related to a wear intensity iA, the normal pressure N and the sliding velocity V. It
can be given by the Archard law, i.e.,
vþ ¼ iANV . ð27Þ

A flux of the abraded mass m is given by
m ¼ qAvþ; ð28Þ

where qA is the mass density of the wearing out body A. There are two other measures of an amount of the
material loss, i.e., a depth uþn of the material removed from the body in a period of the sliding time
ht0; tei 	 R obtained by the integration of the wear velocity
uþn ¼
Z te

t0

vþ dt ð29Þ
and a mass of the material removed from the wearing out body A given by
mA ¼
Z

S
qAuþn dS; ð30Þ
where S is the contact area of the wearing out body.
Some researchers try to define wear as a result of the yielding process of materials (Yang et al., 1993) or

they made use of the fracture mechanics (Glodež et al., 1998).
The wear intensity coefficient iA is the measure of the efficiency of material removal for the given friction

force power. In general, the coefficient of the wear equation may be defined in various ways depending on
the model, which is assumed. The wear equation (27) differs from the classical representation in the omis-
sion of a term representing an inverse proportionality to the surface hardness H (see Rabinowicz, 1995). In
the tribology literature, the wear equation coefficient iA used in (27) is called the dimensional wear constant
or the specific wear rate. If iA is multiplied by the hardness H, then we get the dimensionless intensity of
wear iAH. Therefore, the hardness H can be easily incorporated in quantitative estimates of the dimensional
wear intensity coefficient iA. One can also include anisotropy of hardness in the definition of the wear coef-
ficient. Numerous experiments show that the surface hardness is anisotropic in many materials.

The wear intensity coefficient iA is restricted by thermodynamic requirements as follows:

(a) Restrictions following from the second law of thermodynamics. An energy spent at the wear process is
given by meA, and it is positive for any sliding direction av 2 h0,2pi (see Fig. 9) and for any location of
the contact point, i.e.,
meA ¼ qAvþeA ¼ qAiANVeA P 0; ð31Þ
where eA is the wear energy density (or the energy consumed by formation of a unit mass of wear
debris). Taking into account that

qA;N ; V ; eA P 0; ð32Þ
we obtain the following restriction on the wear intensity coefficient:

iA P 0. ð33Þ
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(b) Constraints of energy dissipated at the frictional contact. All the energy dissipated in friction process is
converted (in a priori unknown proportion) into frictional heat and the energy spent at the wear pro-
cess, i.e.,
P ¼ t � V ¼ �qf � meA; ð34Þ

where qf is the component of the frictional heat flux normal to the body�s boundary. Eq. (34) shows
that the friction force power (P) goes into the frictional heat flux (qf) entering into the body and the
energy spent on wear process of the body (meA). Other forms of the dissipated energy are neglected.
After substituting the friction force and the wear velocity, the constraint of energy dissipated (34)
reduces to the following relation given in the scalar notation:
�ðcos bÞlaNV ¼ �qf � qAiANVeA. ð35Þ
Eq. (34) does not decide which part of the friction force power appears as the frictional heat and the
wear process energy. Assuming that 85% of the friction power converts into frictional heat and the
rest of the power transforms into wear, we get the following relation for the wear component in (35):
�0.15ðcos bÞlaNV ¼ �qAiANVeA. ð36Þ

Thus we have the following quantitative restriction on the wear intensity coefficient:
iA ¼
0.15

qAeA
lka; ð37Þ
since
la cos b ¼ lka. ð38Þ
It is seen from (37) that: the higher eA, the higher wear resistance. An open question is: how to estimate the
wear energy density eA? It has a few components: (a) internal energy of the body in its natural state, (b)
energy of elastic and plastic deformations, (c) stored thermal energy and other. Rabinowicz (1995, p.
162) suggested that in rough calculations of wear such as (34)–(37) one should consider the sliding body
‘‘loaded to the limit’’. It seems to be a right way, in trials to estimate the wear energy density. In the exam-
ple calculations, we use the following average values of the friction coefficient and the wear intensity coef-
ficient, which are typical for polymers
lka ¼ 0.18; iA ¼ 0.5� 10�6 MPa�1. ð39Þ
The phenomena of abrasive wear and dry friction are usually treated as inseparable. Anisotropy of abra-
sion may be explained in terms of an identical anisotropy in friction, see Sung and Suh (1979) and Jacobs
et al. (1990). Therefore, the coefficient of the anisotropic heterogenous friction force and the anisotropic
heterogeneous wear rate can be assumed to be functions of the same type.

Let us postulate that the wear intensity coefficient iA(r) and the friction coefficient lkaðrÞ are the functions
of the same type with respect to the variable r 2 h0,1). We say that a close similarity exists between the
wear intensity iA relation and the friction coefficient lka equation, i.e., both coefficients are the similar func-
tions of the radius r. Let us denote that fact as follows:
iAðrÞ 
 lkaðrÞ. ð40Þ

The function lkaðrÞ is given by (26), so that we have
iAðrÞ ¼ i1 þ
n1

r
; ð41Þ
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where i1 and n1 are constants, i1 > 0, n1 2 R. In our previous study (Zmitrowicz, 1993), we assumed the
similarity between the wear intensity iA and the friction coefficient la, i.e., iA 
 la. The similar approach
we have used in the case of anisotropic frictional heat (Zmitrowicz, 1995). The actual proposition (40) is
better one. In the description (41), values of radii of the circular sliding trajectories are restricted, i.e.,
Fig. 10
Briscoe
r P � n1

i1

; ð42Þ
since iA(r) is non-negative in any case, see inequality (33).
In the pin-on-disc experiments for some polymeric pins, Briscoe and Stolarski (1979, 1981, 1985) ob-

served a maximum wear rate for the large radius of the circular sliding trajectory and a significant reduction
in the rate when the radius approached the radius of the pin (see Fig. 6). Let us assume the following values
of the constants in the friction and wear equations (26) and (41)
C11 ¼ 0.15; E12 ¼ 0.0005 m; ð43Þ
i1 ¼ 0.8� 10�6 MPa�1; n1 ¼ �0.35� 10�8 MPa�1 m. ð44Þ
After substitution (44) into (42), we obtain the restriction for the radii of the circular trajectories, i.e.,
r P 0.0044 m. We are faced by a problem of units for E12 and n1. They are quoted in units of m
and MPa�1 m, respectively. Notice, there is a similarity to units of the coefficient of rolling friction. Accord-
ing to Coulomb model of rolling friction, the coefficient of rolling friction is measured in units of length,
e.g., in m.

The following four values of the independent variable r are taken into consideration:
r1 ¼ 0.0065 m; r2 ¼ 0.025 m; r3 ¼ 0.065 m; r4 ¼ 1. ð45Þ
Then from Eqs. (26) and (41) we get
r1 ¼ 0.0065 m! lka ¼ 0.227; iA ¼ 0.26� 10�6 MPa�1;

r2 ¼ 0.025 m! lka ¼ 0.17; iA ¼ 0.66� 10�6 MPa�1;

r3 ¼ 0.065 m! lka ¼ 0.158; iA ¼ 0.75� 10�6 MPa�1;

r4 ¼ 1! lka ¼ 0.15; iA ¼ 0.8� 10�6 MPa�1.

ð46Þ
. Changes in the friction coefficient lka for various radii r of circular sliding trajectories. This is a comparison of the model with
and Stolarski experimental results.



Fig. 11. Changes in the wear intensity coefficient iA for various radii r of circular sliding trajectories (iA is quoted in 10�6 MPa�1). This
is a comparison of the model with Briscoe and Stolarski experimental results.
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Figs. 10 and 11 illustrate the evolving friction coefficient lkaðrÞ and the wear intensity coefficient iA(r). The
changes are induced by the sliding path curvature. These estimations coincide very well with the results of
Briscoe and Stolarski (1979, 1981, 1985). The wear intensity iA increases significantly as r also increases (a
factor of about 3). A difference in the friction coefficient lka is smaller, and the friction decreases as r in-
creases. In general, wear is more sensitive to any change in the contact conditions while friction varies rel-
atively little. Additionally, these examples show an unusual behaviour of friction and wear, since the
maximum wear rate iA and the maximum friction coefficient lka are for different values of the radius r. No-
tice that in numerous examples known from the tribology literature, the maximum anisotropic wear and the
maximum anisotropic friction are at the same point.
5. Friction asymmetry in the first-order descriptions

Non-centrosymmetric friction can occur in a plane with non-homogeneous friction properties which
form concentric circles in the surface. In this case, there are two privileged sliding directions: along concen-
tric circular trajectories and along radial trajectories. The friction force can depend on the sense of the slid-
ing direction. Therefore, the sliding along concentric circular trajectories meets different friction in the
clockwise direction and in the anticlockwise direction. The sliding along radii has different friction for
the motion from the origin to outside and for the motion from the outside to the origin.

Anisotropic friction models described with the aid of the friction tensors C1 presented in Table 1 are cen-
trosymmetric. The inversion �1 describes anisotropy having central symmetry.

In the non-centrosymmetric case a change of sense of the sliding direction must be connected with a var-
iation in anisotropy description. An introduction of friction tensors C1 with components depending on the
sliding direction makes it possible. Let us assume that the friction tensor C1 is a function of the sliding
direction parameter av, i.e.,
C1ðav;XÞ ¼ CijðavÞkiðXÞ � kjðXÞ; av 2 h0; 2pi; i; j ¼ 1; 2; ð47Þ

where av is the measure of an oriented angle between the unit vector v0 of a reference direction (e.g., Ox
axis) and the sliding velocity unit vector v, see Fig. 9. Let us consider the friction tensor C1(av,X) which
is a trigonometrical polynomial of av as follows:
C1ðav;XÞ ¼ C10ðXÞ þ C11ðXÞ cosðn1avÞ þ C12ðXÞ sinðm1avÞ; n1;m1 ¼ 0; 1; 2; 3; . . . ; ð48Þ
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where C10, C11, C12 are the second-order tensors which are constants of the polynomial (48). Hence, the
friction constitutive equation (6) has the following form:
t ¼ �N ½C10 þ C11 cosðn1avÞ þ C12 sinðm1avÞ�vþ E1

n

q

� �
. ð49Þ
The friction equation (49) satisfies the axiom of material objectivity, since the orthogonal transformations
R 2 O do not change angles between two arbitrary vectors, i.e.,
ðRv0Þ � ðRvÞ ¼ v0 � v; 8v0; v 2 E2. ð50Þ

Therefore, the oriented angle av leaves unchanged after the orthogonal transformation. The restriction
vTC1v P 0 following from the second law of thermodynamics, see (18), we extend taking into account
new definition of the friction tensor C1, i.e.,
VT½C10 þ C11 cosðn1avÞ þ C12 sinðm1avÞ�V P 0; ð51Þ

for every V and av 2 h0,2pi.

Let us consider the friction equation (49) in the following simplified form:
t ¼ �N ½C10 þ C11 cosðn1avÞ�vþ E1

n

q

� �
; ð52Þ
where n1 = 1 and the tensors C10, C11 have the following representations:
½C10� ¼
C11

0 0

0 C22
0

 !
; ½C11� ¼

C11
1 0

0 C22
1

 !
. ð53Þ
Then, the friction coefficient (26) for the sliding along concentric circular trajectories of the radius r is de-
fined as follows:
lkaðrÞ ¼ C11
0 þ C11

1 cos av þ
E12

r
. ð54Þ
The friction coefficient for the sliding along rectilinear radial trajectories (q =1) takes the form
lka ¼ la ¼ C22
0 þ C22

1 cos av. ð55Þ

The status of the forward and backward sliding is distinguished by the factor av, i.e.,
av ¼
0 if forward sliding;

p if backward sliding.

�
ð56Þ
The inversion �1 is not the symmetry transformation in this case.
6. Compositions of two surfaces in the first-order descriptions

In the tribology literature there are trials to study changes of anisotropic friction in dependence on the
compositions of the contacting surfaces. Experimental measurements of friction for various compositions
of two rough surfaces with homogeneous orthotropic friction properties were carried out by Sharpin
(1957). A change of frictional anisotropy with respect to different compositions of two faces of contacting
diamond crystals has been observed by Seal (1957). Schön (2000) measured friction coefficients for two dif-
ferent combinations of flat composite specimen pairs (graphite fiber/epoxy matrix) taking different orien-
tations of the fibers with respect to the sliding direction. Friction for various combinations of the
contacting surfaces of silicon crystals was investigated by Gatzen and Beck (2003).
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Let us assume that for the given normal pressure N the resultant friction force at the contact of two sur-
faces is equal to the product of a ‘‘composition coefficient’’ by the sum of the friction forces obtained for
each surface taken separately
tAB ¼ jð t
ðAÞ
þ t
ðBÞ
Þ; ð57Þ
where j is the experimental composition coefficient, t
ðAÞ

and t
ðBÞ

are friction forces which correspond to the
friction when sliding a third body with isotropic homogeneous friction properties along the contacting sur-
faces (A) and (B). We call the relation (57) as the additive composition law. Of course, one can assume other
composition laws different than Eq. (57). For example, the resultant friction force at the contact of two sur-
faces can be equal to a minimum of the friction forces obtained for each surface taken separately, i.e.,
tAB ¼ minf t
ðAÞ
; t
ðBÞ
g. ð58Þ
Let us compare the additive law (57) with the minimum type law in the form (58) in the case of isotropic

friction. According to these laws of the composition, the resultant friction coefficients l
ðABÞ

can be calculated
with the aid of the following formulae:
l
ðABÞ ¼ jð lðAÞ þ l

ðBÞÞ; ð59Þ

l
ðABÞ ¼ minf l

ðAÞ
; l
ðBÞg. ð60Þ
We take into account friction coefficients for various materials measured by Bowden and Tabor (1956) and
Kragelskii (1965).

First example. Measured coefficients are as follows: for steel–steel l
ðAÞ ¼ 0.17, for cast iron-cast iron

l
ðBÞ ¼ 0.28 and for steel–cast iron l

ðABÞ ¼ 0.32; the calculated friction coefficient according to Eq. (59) for
steel–cast iron is given by
l
ðABÞ ¼ 0.71ð0.17þ 0.28Þ � 0.32; ð61Þ
where j = 0.71. It is seen that, in the additive law, the composition coefficient j can take various values, and
the law (57) can be easily adopted to real situations.

Second example. Measured coefficients: for steel–steel l
ðAÞ ¼ 0.17, for graphite–graphite l

ðBÞ ¼ 0.1 and for

steel–graphite l
ðABÞ ¼ 0.1; the calculated coefficient according to Eq. (60) for steel–graphite is as follows:
l
ðABÞ ¼ minf0.17; 0.1g ¼ 0.1. ð62Þ
The minimum type law gives correct results in this case, since the friction properties of the second material
are strongly dominated. That situation is typical for the solid lubricants (graphite, PTFE, etc.). In our opin-
ion, the minimum type law (58) is very restrictive, and it has a restricted range of applications. Therefore,
we use the additive law (57).

Property 1. The combination of the following two surfaces, the first surface with non-homogeneous friction

properties in the form of concentric circles and the second surface with other friction properties, gives the

resultant friction which depends on the composed friction types and on the manner of composition.

In the first-order description, the friction forces for surfaces (A) and (B) can be represented by
t
ðsÞ
¼ �N C

ðsÞ

1
v
ðsÞ
þE
ðsÞ

1

n
ðsÞ

q
ðsÞ

2
4

3
5; s � A;B; ð63Þ
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where
C
ðsÞ

1 ¼ C11
ðsÞ

k1

ðsÞ
� k1

ðsÞ
þC22
ðsÞ

k2

ðsÞ
� k2

ðsÞ
; ð64Þ

E1

ðsÞ
¼ E12

ðsÞ
v
ðsÞ
� n
ðsÞ
þE22
ðsÞ

n
ðsÞ
� n
ðsÞ

. ð65Þ
The sliding path is always a common curve in the surfaces (A) and (B) being in contact. An observer in
the body (A) sees one sliding trajectory of the body, and an observer in the body (B) also sees one sliding
path. For instance: (a) any solid body sliding down an inclined surface draws a rectilinear sliding trajectory,
(b) a fixed pin pressed to the rotating disc draws the circular sliding trajectory (pin-on-disc tests), (c) the pin
moving with the given velocity along a radius of the rotating disc draws a spiral trajectory. The sliding tra-
jectory can be uniquely specified not only in the case of two contacting rigid bodies but also in the case of
two deformable bodies. In every-day life, one sliding trajectory can be observed in: railway wheel rolling on
a rail, automobile tire sliding against a road, shaft rotating in journal bearings, toothed gear wheels rolling
and sliding one over another, rubber eraser rubbing out pencil marks on a paper, etc.

Two contacting and sliding bodies realize one relative motion, and they have at the given contact point
one relative motion trajectory and one sliding path curvature. Therefore, the sliding path curvature and the
friction force are uniquely determined. Hence, quantities relating to the sliding path are identical for both
surfaces at the given contact point, i.e.,
q
ðAÞ
¼ q
ðBÞ
� q; ð66Þ

v
ðAÞ
¼ v
ðBÞ
� v; ð67Þ

n
ðAÞ
¼ n
ðBÞ
� n. ð68Þ
These facts do not depend on the relative positions of the contacting surfaces.

The unit vectors fk1

ðsÞ
; k2

ðsÞ
g relating to the physical properties of the surfaces can be transformed to the

common basis connected with the sliding path, i.e., to {v,n}, see Fig. 8. After transformation, the tensor

C1

ðsÞ
is given by
C1

ðsÞ
¼ ½C11

ðsÞ
ðB11

ðsÞ
Þ2 þ C22

ðsÞ
ðB21

ðsÞ
Þ2�v� vþ ðC11

ðsÞ
B11

ðsÞ
B12

ðsÞ
þC22
ðsÞ

B21

ðsÞ
B22

ðsÞ
Þðv� nþ n� vÞ

þ ½C11
ðsÞ
ðB12

ðsÞ
Þ2 þ C22

ðsÞ
ðB22

ðsÞ
Þ2�n� n. ð69Þ
The transformation coefficients Bij (i, j = 1,2) are defined by (14).
Taking into account (63)–(69), the resultant friction force at the contact of two surfaces can be expressed

by
tAB ¼ �N
h

C1

ðABÞ
vþ E1

ðABÞ n

q

i
; ð70Þ
where
C1

ðABÞ
¼ j

h
C1

ðAÞ
þC1

ðBÞ i
. ð71Þ
The tensors E1

ðAÞ
and E1

ðBÞ
have the tensor bases composed of the sliding path unit vectors v and n. Therefore,

their components can be added without any transformation, i.e.,
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E1

ðABÞ
¼ j½E1

ðAÞ
þE1

ðBÞ
� ¼ j½ðE12

ðAÞ
þE12
ðBÞ
Þv� nþ ðE22

ðAÞ
þE22
ðBÞ
Þn� n�. ð72Þ
We consider three examples of the composed two surfaces.
First example. The composition of two surfaces (A) and (B) with two inhomogeneous friction properties

in the form of concentric circles conserves the axial symmetry, if the centers of the concentric circles coin-

cide. The axial symmetry implies that the coefficients of the transformation of the unit vectors fk1

ðsÞ
; k2

ðsÞ
g to

the basis {v,n} are identical for both the surfaces
Bij

ðAÞ
¼ Bij

ðBÞ
� Bij; i; j ¼ 1; 2. ð73Þ
Hence, the resultant friction tensor (71) takes the following form:
C1

ðABÞ
¼ jf½C11

ðABÞ
ðB11Þ2 þ C22

ðABÞ
ðB21Þ2�v� vþ ðC11

ðABÞ
B11B12 þ C22

ðABÞ
B21B22Þðv� nþ n� vÞ

þ ½C11
ðABÞ
ðB12Þ2 þ C22

ðABÞ
ðB22Þ2�n� ng; ð74Þ
where
C11
ðABÞ
¼ C11

ðAÞ
þC11
ðBÞ
; ð75Þ

C22
ðABÞ
¼ C22

ðAÞ
þC22
ðBÞ

. ð76Þ
Second example. If the surfaces (A) and (B) are composed on the manner that the centers of the concen-

tric circles do not coincide, then the unit vectors fk1

ðsÞ
; k2

ðsÞ
g relating to the physical properties of the surfaces

have different orientations with respect to the basis {v,n}, for different surfaces. Hence, the transformation
coefficients for the surfaces (A) and (B) have different values
Bij

ðAÞ
6¼ Bij

ðBÞ
. ð77Þ
In this case, the resultant friction tensor C1

ðABÞ
is defined by (71) and (69). In general, the resultant friction of

the composed surfaces is non-homogeneous.
Third example. Let us consider the composition of the surface (A) with non-homogeneous friction prop-

erties in the form of concentric circles (see Fig. 12) and the surface (B) with homogeneous anisotropic fric-
tion defined by the following tensor:
C1

ðBÞ
¼ Cij
ðBÞ

ki

ðBÞ
� kj

ðBÞ
; i; j;¼ 1; 2. ð78Þ
With the aid of the second order tensor (78) we can define: orthotropic, anisotropic and isotropic homo-
geneous friction depending on the representation of the tensor C1 (see Table 1). In the case of the homo-

geneous friction E1

ðBÞ
¼ 0. The unit vectors fk1

ðBÞ
; k2

ðBÞ
g can be transformed according to the rule (13). Then, the

transformation coefficients Bij

ðsÞ
have different values for the surfaces (A) and (B).

Property 2. The symmetry group of the resultant friction tAB in the contact of two surfaces is equal to an

intersection (product) of the symmetry groups for the surfaces (A) and (B)
GðtABÞ ¼ Gð t
ðAÞ
Þ \ Gð t

ðBÞ
Þ. ð79Þ



Fig. 12. The composition of two surfaces: surface (A) with inhomogeneous anisotropic properties in the form of concentric circles,
surface (B) with homogeneous orthotropic properties.

A. Zmitrowicz / International Journal of Solids and Structures 43 (2006) 4407–4451 4431
The resultant symmetry, in general, has a number of elements equal to the order of the symmetry group
with the lower number of symmetry generators. It acts in any case of the composed two friction inhomo-
geneities. The resultant friction tAB calculated with the aid of the relation (57) has the symmetry properties
which are described by the rule (79).

The non-homogeneous friction composed with the homogeneous gives the non-homogeneous friction as
the composition result. Then, the intersection of the symmetry groups with respect to translations d is given
by
fTd; d ¼ 0g \ fTd; d 2 h0;1Þg ¼ fTd; d ¼ 0g; ð80Þ
where d = 0 means no translations, d 2 h0,1) denotes any translation along any axis. The contact of the
surface with non-homogeneous anisotropic friction in the form of concentric circles and the surface with
homogeneous anisotropic friction has non-homogeneous anisotropic behaviour.

If the homogeneous friction symmetry properties of the surface (B) are defined by the orthotropic
friction group or by the anisotropic friction group, then the intersection with the axial symmetry group of
the surface (A) is equal to the anisotropic symmetry group, i.e.,
fR/
c g \ f�1; Jm1

; Jm2
g ¼ f�1g; ð81Þ

fR/
c g \ f�1g ¼ f�1g. ð82Þ
The intersection of the axial symmetry with the isotropy defined by the full orthogonal group O gives the
axial symmetry
fR/
c g \ O ¼ fR/

c g. ð83Þ
The contact of two surfaces with the non-homogeneous axi-symmetric friction properties is described by
the axial symmetry group (if the centers of the concentric circles coincide)
fR/
c g \ fR/

c g ¼ fR/
c g. ð84Þ
If the surfaces (A) and (B) are composed in the manner that the centers of the concentric circles do not
coincide, then the contact has the symmetry group composed of the identity and a mirror reflection with
respect to a plane crossing the centers of the circles and normal to the contact surface.
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7. Second-order descriptions of anisotropic and heterogeneous friction

In the second-order polynomial formulation, the friction force function of the form (6) can be repre-
sented as follows:
Table
Nonlin

Type o
anisot

Isotro

Ortho

Anisot

Tetrag

Axisym
t ¼ �N C1vþ C2 � ðv� v� vÞ þ E1n
1

q
þ E2 � ðv� v� nÞ 1

q
þ ðn� v� vÞ 1

q
þ ðv� n� vÞ 1

q

��

þ ðv� n� nÞ 1

q2
þ ðn� n� vÞ 1

q2
þ ðn� v� nÞ 1

q2
þ ðn� n� nÞ 1

q3

��
; ð85Þ
with the following fourth-order friction tensors:
C2ðXÞ ¼ Cijklki � kj � kk � kl; i; j; k; l ¼ 1; 2; Cijkl ¼ const; ki ¼ kiðXÞ;
C2 2T4 ¼ E2 � E2 � E2 � E2; ð86Þ

E2 ¼ Eijklei � ej � ek � el; Eijkl 6¼ const; fe1; e2g � fv; ng; E2 2T4. ð87Þ
In Eq. (85), the tensor E2 is contracted with third-order tensors composed by all combinations of v and n/q
(with an exception of v � v � v). Vectors (v,n/q) and the third-order tensors composed by these vectors are
independent variables of the friction equation (85). The second-order tensors (C1,E1) and the fourth-order
tensors (C2,E2) are equation coefficients. The tensor E2 describes the additional friction and the motion
constraints which depend on first, second and third powers of the sliding path curvature. C2 defines other
types of frictional anisotropy and inhomogeneity (e.g., tetragonal anisotropy). The tensor C2 can be trans-
formed to the tensor basis composed by the unit vectors {v,n} taking into account the transformation rule
(13).

Anisotropic, tetragonal anisotropic, orthotropic, isotropic and axi-symmetric friction can be distin-
guished with the aid of the friction tensor C2 and the symmetry groups, see Table 3 and Zmitrowicz
3
ear models of anisotropic friction

f friction
ropy

Symmetry
elements

Restrictions on the
friction tensor C2

Coefficients
of the tensor C2

Restrictions on the coefficients

pic O C2 = C1111kikjkikj,
i, j = 1,2

C1111 = C2222

= C2121 = C1212
C1111 P 0

tropic ±1, Jm1, Jm2 C2 = C1111k1kik1ki

+ C2222k2kik2ki,
i = 1,2

C1111 = C1212,
C2222 = C2121

C1111cos2av + C2222sin2av P 0,
av 2 < 0,2p >

ropic ±1 None C1111, C1122, C1121,
C1112, C2211, C2222,
C2221, C2212, C2111,
C2122, C2121, C2112,
C1211, C1222, C1221, C1212

Cijklvivjvkvl P 0, i, j,k, l = 1,2,
v1 = cosav, v2 = sinav

onal anisotropic þ1;Rp=2
n ,

Jm1, Jm2, Jm3, Jm4

C2 = C1111kikikiki

+ C2112kikjkjki

+ C1122kikikjkj

+ C2121kikjkikj,
i 5 j, i, j = 1,2

C1111 = C2222, C1122

= C2211, C2121 = C1212,
C2112 = C1221

C1111(cos4av + sin4av) +
2(C1122 + C2121 + C2112) ·
cos2avsin2av P 0, av 2 h0,2pi

metric R/
n / 2h0,2pi C2 = isotropic tensor plus

(�1)i+1C1121kikikjki

+ (�1)i+1C1121kikjkjkj,
i 5 j, i, j = 1,2

C1111 = C2222 = C2121

= C1212, C1121 = �C2111

= �C2212 = C1222

C1111 P 0, C1121 2 R
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(1989). The symmetry group GðC2Þ of the friction tensor C2 is the subgroup of the full orthogonal group O
and it satisfies the following relation:
GðC2Þ ¼ R : R 2 O; �
4

1
R

� �
� C2 ¼ C2

� �
; ð88Þ
where �
4

1
denotes the following contraction:
�
4

1
R

� �
� C2 ¼ CijklRki � Rkj � Rkk � Rkl. ð89Þ
Comparing tensor components before and after the symmetry transformation, one can obtain a set of equa-
tions connecting some of them. It enables to establish the set of independent components for C2 in various
cases. Representations of the tensor C2 are as follows.

(a) Tetragonal anisotropy. It has four independent coefficients C1111, C1122, C2121 and C2112 arranged in
the following table:
ð90Þ
The tetragonal anisotropic friction tensor is described by
C2 ¼ C1111ki � ki � ki � ki þ C2112ki � kj � kj � ki þ C1122ki � ki � kj � kj

þ C2121ki � kj � ki � kj; i 6¼ j; i; j ¼ 1; 2. ð91Þ
Its group of symmetry has the following elements: identity, rotations with the angle p/2 and four mir-
ror reflections with respect to four principal directions, i.e.,
GðC2Þ ¼ fþ1;Rp=2
n ; Jm1

; Jm2
; Jm3

; Jm4
g. ð92Þ
(b) Orthotropy. The tensor is described by two independent coefficients C1111 and C2222 in the following
table:
ð93Þ
(c) Isotropy. The tensor is described by one independent coefficient C1111 as follows:
ð94Þ
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(d) Axial-symmetry. The tensor has two independent coefficients C1111 and C1121 arranged in the table
ð95Þ
In the general case, the representation of the fourth-order tensor E2 is given by 16 coefficients, i.e.,
ð96Þ
The unit vectors v and n compose its tensor basis. Hence, the contraction of the tensor E2 and the indepen-
dent variables (85) gives the following result:
E2 � ðv� v� nÞ 1

q
þ � � � þ ðn� n� nÞ 1

q3

� �

¼ ðE1112 þ E1211 þ E1121Þ 1

q
þ ðE1122 þ E1221 þ E1212Þ 1

q2
þ E1222 1

q3

� �
v

þ ðE2112 þ E2211 þ E2121Þ 1

q
þ ðE2122 þ E2221 þ E2212Þ 1

q2
þ E2222 1

q3

� �
n. ð97Þ
The first component in (97) defines the additional friction (dissipative force), the second component deter-
mines the reaction to the constraints normal to the sliding path (gyroscopic force). It is seen that the con-
traction of the tensor E2 and the independent variables gives terms, which depend on the sliding path radius
q in the first, second, or third power. Notice, that various components of the tensor E2 are quoted in units
of m in the first, second and third power.

Taking into account the term (v � v � v) between the independent variables of the constitutive equation
(85), we get the following result of the contraction with the tensor E2:
E2 � ðv� v� vÞ ¼ E1111vþ E2111n. ð98Þ
Both terms on the right hand side are independent on the curvature radius. Changing the path from a curve
to a straight line, these terms do not disappear, since they do not depend on the curvature. Therefore they
do not describe the additional friction nor the reaction to the sliding constraints. This is the reason that the
component (98) is neglected in Eq. (85).

The friction force vector (85) can be decomposed into the following two components:
t ¼ t0 þ tq; ð99Þ
where
t0 ¼ �NfC1vþ C2 � ðv� v� vÞg; ð100Þ

tq ¼ �N E1n
1

q
þ E2 � ðv� v� nÞ 1

q
þ � � � þ ðn� n� nÞ 1

q3

� �� �
. ð101Þ
The component t0 does not depend on the sliding path curvature, the component tq depends on the trajec-
tory curvature, and it has the following values for different curvature radii:
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tq

¼ 0 for q ¼ 1;
6¼ 0 for 0 < q <1;
¼ 1 for q ¼ 0.

8><
>: ð102Þ
The singular case q = 0 is physically meaningless. In many singular cases, the sliding trajectory reduces to
the single point (q = 0), then there are no sliding and no dynamic friction. Furthermore, from the theoret-
ical point of view, in corners of a zigzag path the radius of curvature q is equal to zero. In that case, the
sliding along the zigzag line one can consider as the sliding along separate segments of straight lines with
the radius of curvature equal to infinity.

The symmetry group of the friction force component t0 is an intersection of the symmetry groups of the
friction tensors C1 and C2, i.e.,
Gðt0Þ ¼ GðC1;C2Þ ¼ GðC1Þ \ GðC2Þ. ð103Þ

For example, the orthotropic friction force component t0 can be defined by isotropic tensor C1 and ortho-
tropic tensor C2, since
fOg \ f�1; Jm1
; Jm2
g ¼ f�1; Jm1

; Jm2
g. ð104Þ
Property 1. The second-order friction equation (85) satisfies the axiom of objectivity.

According to the axiom of objectivity, the friction constitutive relationships should be invariant with re-
spect to any automorphisms of the Euclidean vector space E2 (i.e., with respect to any motion of the ref-
erence system). Automorphisms of the Euclidean space can be represented by the orthogonal tensors.
Walter Noll stated, ‘‘in any system of reference, Galilean or not, the constitutive equations must be the
same’’. Two arbitrary observers of the sliding process must recognize the same friction force vector at
the contact.

The requirement of form-invariance of the friction force vector (6) is satisfied if
t N ;Rv;R
n

q

� �
¼ Rt N ; v;

n

q

� �
; 8R 2 O; R�1 ¼ RT; det R ¼ �1; ð105Þ
where the orthogonal tensor R describes changes of an observer. In the case of the second-order friction
equation (85), the axiom of objectivity expresses as follows:
t N ;Rv;R
n

q

� �
¼ �NR C1vþ ½ðC2vRTÞRv�vþ E1n

1

q
þ ½ðE2vRTÞRv�n 1

q
þ ½ðE2nRTÞRv�v 1

q

�

þ ½ðE2vRTÞRn�v 1

q
þ ½ðE2vRTÞRn�n 1

q2
þ ½ðE2nRTÞRn�v 1

q2
þ ½ðE2nRTÞRv�n 1

q2

þ ½ðE2nRTÞRn�n 1

q3

�

¼ Rt N ; v;
n

q

� �
. ð106Þ
Here, all friction tensors Ci, Ej, i, j = 1,2 are assumed to be isotropic. The case of the isotropic tensors is
more restrictive than the case of the anisotropic tensors, by virtue of the definition (105).

The principle of objectivity reduces the form of the friction constitutive equation. For example, the inde-
pendent variables being even order tensors, such as
ðv� vÞ; ðv� nÞ 1

q
; ðn� nÞ 1

q2
; . . . ð107Þ
must be neglected in the constitutive polynomial (85). They do not satisfy the condition (105).
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Property 2. The condition of power dissipated in the friction process (17) imposes restrictions on the

parameters of the constitutive equation (85).

In general, by deriving the constitutive equations, the constitutive functions are assumed to satisfy the
dissipation inequality, for any regular motion. This physically motivated condition ensures satisfaction
of the second law of thermodynamics in the form of inequality namely, the Clausius–Duhem inequality
(axiom of entropy production).

The friction constitutive functions are assumed to satisfy the dissipation inequality for any sliding mo-
tion. Taking into account that N P 0 and V > 0, after substitution of the second-order friction equation
(85) into the dissipation inequality (17), we obtain
vTC1vþ vTðvTC2vÞvþ vTE1n
1

q
þ vTðvTE2vÞn 1

q
þ vTðnTE2vÞv 1

q
þ vTðvTE2nÞv 1

q
þ vTðvTE2nÞn 1

q2

þ vTðnTE2nÞv 1

q2
þ vTðnTE2vÞn 1

q2
þ vTðnTE2nÞn 1

q3
P 0; 8V. ð108Þ
Taking the representations of the tensors E1 and E2 (19) and (96) we get
vTC1vþ vTðvTC2vÞvþ ðE12 þ E1112 þ E1211 þ E1121Þ 1

q
þ ðE1122 þ E1221 þ E1212Þ 1

q2
þ E1222 1

q3
P 0.

ð109Þ

Notice that the normal component of the force tq, see Eqs. (20), (97), (101), gives the power (and the work)
equal to zero.

Let us substitute
a ¼ vTC1vþ vTðvTC2vÞvþ ðE1122 þ E1221 þ E1212Þ 1

q2
; ð110Þ

b ¼ ðE12 þ E1112 þ E1211 þ E1121Þ þ E1222 1

q2
; ð111Þ
then the dissipation inequality (109) reduces to
aþ 1

q
b P 0. ð112Þ
Let us consider q > 0 and the following restrictions for a and b:
a P 0; b P 0. ð113Þ

Then the dissipative inequality (109) is satisfied for every sliding velocity V and every positive radius of cur-
vature q 2 Rþ.

Let us assume that q > 0 and
a > 0; b 6 0; ð114Þ

then the dissipative inequality is satisfied for every V and for some trajectories, i.e., for some values of the
positive curvature radii
q P � b
a

. ð115Þ
The curvature radius q has ± sign and the friction force depends on the positive as well negative sign of
the radii. If the radius of curvature is negative q < 0 and the restrictions (113) are taken into account, then
the dissipative inequality (109) is satisfied for the following radii of curvature:
q 6 � b
a

. ð116Þ



A. Zmitrowicz / International Journal of Solids and Structures 43 (2006) 4407–4451 4437
Taking q < 0 and the restrictions (113), the dissipative inequality holds for every negative radius of curva-
ture q 2 R�.

If the sliding trajectory is a straight line (q =1), then the dissipation inequality is satisfied for a P 0 and
for any b.
8. Illustrative examples of the second-order descriptions

Let us consider non-homogeneous friction properties, which form spirals in the sliding surface. This type
of inhomogeneity refers to specific machining techniques of surfaces (e.g., spiral common directions of
machining marks and spiral microgrooves in the surface), and to specific physical properties of materials:
(a) growth spirals on crystal faces (see Tolansky, 1968), (b) microstructure evolving along spirals at the slid-
ing surfaces of some materials (self-organization phenomenon). There are two privileged sliding trajectories
in this surface, i.e., along the spirals and along curved radii perpendicular to the spirals. The sliding along
spirals can occur with the lowest resistance to motion, and it can have the greatest resistance in the direction
perpendicular to the spirals.

Let us assume that unit vectors k1 and k2 are tangent and normal to the spiral respectively at the given
point. In the dependence on the position in the spiral, the unit vectors change their orientations with respect
to the reference system. Let us consider the sliding trajectory of a material point, which coincides with the
spiral. Then the following relations hold between the unit vectors:
Fi
k1 ¼ v; k2 ¼ n ð117Þ

and the coefficients of the transformation matrix B are given by
B11 ¼ B22 ¼ 1; B12 ¼ B21 ¼ 0. ð118Þ

The unit vectors {v,n} describe the moving reference frame whose origin is located at the point P, see
Fig. 13.
g. 13. The sliding trajectory of a material point in a plane with heterogeneous friction properties, which form the spiral.
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The friction tensors are presented in Table 3. We have assumed the following isotropic friction tensor C1

and the orthotropic friction tensor C2
Table
Hetero

Type o
hetero

Spiral
C1 ¼ C11ðk1 � k1 þ k2 � k2Þ ¼ C111; ð119Þ
C2 ¼ C1111k1 � ki � k1 � ki þ C2222k2 � ki � k2 � ki; i ¼ 1; 2; ð120Þ
where 1 is the identity tensor. Taking into account (100) and (117), the friction force component t0 is
given by
t0 ¼ �NðC11 þ C1111Þv. ð121Þ

The tensors E1 and E2 are defined as follows:
E1 ¼ E22n� n; ð122Þ
E2 ¼ E2222n� n� n� nþ E1212v� n� v� n. ð123Þ
Taking into account (101), the friction force component tq is given by
tq ¼ �N
E1212

q2
vþ E22

q
þ E2222

q3

� �
n

� �
. ð124Þ
Therefore, the friction force t = t0 + tq for the sliding along the spiral has the following dissipative tkv and
gyroscopic t?n components:
t ¼ �N C11 þ C1111 þ E1212

q2

� �
vþ E22

q
þ E2222

q3

� �
n

� �
� tkvþ t?n. ð125Þ
The coefficients C11, C1111, E1212 and the radius of curvature q are restricted by the second law of thermo-
dynamics, see Table 4. The coefficient of the dissipative friction force component depends on the second
power of the curvature radius, i.e.,
lkaðqÞ ¼ C11 þ C1111 þ E1212

q2
. ð126Þ
In the case of kinematics dependent friction, friction is non-uniform throughout the spiral. The friction
coefficient lka changes along the spiral, and it depends on the second power of the spiral curvature (1/q2).

Let us consider motion of a material point in a plane with non-homogeneous anisotropic friction. The
motion is described by the following equation:
m€x ¼ Fþ t; ð127Þ

where m is the mass of the material point, x is the position vector with the respect to the reference system
Cxy. F is the central force of the following type:
4
geneous anisotropic friction in the second-order description

f friction
geneity

Friction tensors C1, E1, C2, E2 Coefficients of the
friction tensors

Restrictions on the coefficients
and the radius

C1 = C111 C11 aþ 1
q b P 0

E1 = E22nn E22 a ¼ vTC1vþ vTðvTC2vÞvþ E1212 1
q2

C2 = C1111k1kik1ki

+ C2222k2kik2ki, i = 1,2
C1111 = C1212, C2222 = C2121 b = 0

E2 = E2222nnnn + E1212vnvn E2222, E1212 E22 2 R, E2222 2 R
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jFj ¼ c

R3
; c ¼ const; ð128Þ
where R is the radius from the origin C to the sliding material point P (see Fig. 13). The central force is
directed from the origin C to the point P. It is assumed that F! 0 if R!1. The acceleration vector is
decomposed into tangential and centrifugal accelerations as follows:
€x ¼ dðV vÞ
dt
¼ dV

dt
vþ V 2

q
n; ð129Þ
where the time derivative of the unit vector v has the following form:
dv

dt
¼ dv

ds
ds
dt
¼ V

dv

ds
. ð130Þ
The motion equation given in the local basis defined by the unit vectors tangent and normal to the slid-
ing trajectory {v,n} has the form as follows:
m
dV
dt
¼ F k þ tk; ð131Þ

m
V 2

q
¼ F ? þ t?. ð132Þ
The tangent and normal components of the central force (see Fig. 13) are given by
F k ¼ jFj sin cv; ð133Þ
F ? ¼ �jFj cos cn; ð134Þ
where c is the angle between the radius R and the normal direction to the trajectory.
We investigate a constrained motion of the material point, i.e., the point is constrained to move along

the specified plane spiral. Here, Archimedes spiral is specified as the curved trajectory. It is given by the
formula for the radius R with respect to an angle w (polar coordinates), i.e.,
RðwÞ ¼ aw; w 2 h0;1Þ; a ¼ const. ð135Þ
In this case, the radius of curvature q is a monotonic function of the angle w, and it is described as follows:
q ¼ aðw3 þ 1Þ3=2

w2 þ 2
. ð136Þ
The angle c is given by
c ¼ 1

R
dR
dw
¼ 1

w
. ð137Þ
Let us introduce the sliding motion constraint normal to the spiral trajectory defined with the aid of the
second motion equation (132), i.e.,
t? ¼ m
V 2

q
� F ?. ð138Þ
After substitution the gyroscopic components of the friction force (125) and the central force (128) and
(134) into (138), we get
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�N
E22

q
þ E2222

q3

� �
¼ m

V 2

q
� c

R3
cos c. ð139Þ
The coefficient E22 is assumed to be the following function of the sliding velocity:
E22 ¼ �m
V 2

N
. ð140Þ
The coefficient E2222 is assumed to be the function of the angle w, i.e.,
E2222 ¼ cq3 cos c

NR3
¼ c

N
ðw3 þ 1Þ3=2

wðw2 þ 2Þ

" #3

cos
1

w

� �
. ð141Þ
According to the assumptions (140) and (141), the equation of motion in the normal direction (132) is sat-
isfied identically, i.e., the motion in the direction normal to the spiral is constrained. In other words, the
material point is constrained only to move along the spiral trajectory (an effect of a ‘‘motion by rails’’).

The material point moves along Archimedes spiral (135) with the sliding velocity V, i.e.,
V ¼ dR
dt
¼ a _w ð142Þ
and its time derivative described by
dV
dt
¼ a€w; ð143Þ
where w is the function of time. We substitute the following quantities to the motion equation (131): the
tangent components of the central force (133), the friction force (126), the acceleration (143), the radius
of curvature (136) and the angle (137). Then, the equation of sliding in the tangent direction to the spiral
(131) is given by
€w ¼ 1

ma
AðwÞ; ð144Þ

AðwÞ ¼ c

ðawÞ3
sin

1

w

� �
� N C11 þ C1111 þ E1212 ðw

2 þ 2Þ2

a2ðw3 þ 1Þ3

" #
. ð145Þ
The material point starts sliding at the given position w0 and R0 = aw0 with the given initial velocity
V ðt0Þ ¼ V 0 � a _w0 tangent to the spiral, i.e.,
wðt0Þ ¼ w0;
_wðt0Þ ¼ _w0. ð146Þ
By integrating the sliding velocity (142) we obtain the sliding way passed by the material point
sðtÞ ¼ a
Z t

t0

_wds. ð147Þ
The motion equation (144) has been solved by means of the Runge–Kutta fourth-order method.
In the illustrative examples, the mass of the material point is m = 1 kg. The normal pressure force is

taken to be equal to the gravity force. The constant of the Archimedes spiral is a = 0.1 rad�1 m. The coef-
ficients of the friction tensors independent on the sliding kinematics are as follows:
C11 ¼ 0.1; C1111 ¼ 0.05. ð148Þ
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We considered two examples: (a) Fig. 14 shows a segment of the spiral trajectory when the friction coef-
ficient lka increases in dependence on the curvature radius q (see Fig. 15), (b) Fig. 16 presents a segment of
the spiral trajectory when the friction coefficient decreases with the curvature radius (see Fig. 17). The fol-
lowing values were taken for the constant of the central force c, the coefficient of the friction tensor depen-
dent on the sliding kinematics E1212 and the motion initial conditions w0, _w0:

(a) in Figs. 14 and 15
Fig. 14

F

c ¼ 0.0005 Nm3; E1212 ¼ �0.00025 m2; w0 ¼ 0.5 rad; _w0 ¼ 5 s�1 rad; ð149Þ

(b) in Figs. 16 and 17
c ¼ 0.005 Nm3; E1212 ¼ 0.0008 m2; w0 ¼ 1 rad; _w0 ¼ 10 s�1 rad. ð150Þ
. The sliding trajectory of a material point along a segment of the Archimedes spiral (the small range of the curvature radii).

ig. 15. Changes in the friction coefficient lka for various radii of curvature of the spiral trajectory presented in Fig. 14.



Fig. 16. The sliding trajectory of a material point along a segment of the Archimedes spiral (the large range of the curvature radii).

Fig. 17. Changes in the friction coefficient lka for various radii of curvature of the spiral trajectory presented in Fig. 16.
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The material point slides non-uniformly along a segment of the Archimedes spiral due to the initial
velocity and the tangential components of the central and friction forces. When the radius R increases,
the central force F decreases. Since the friction force acts, the material point dissipates the initial kinetic
energy, and finally it stops. Intervals between points on the sliding trajectories plotted in Figs. 14 and 16
correspond to constant time intervals 0.04 s.

With the aid of the spiral trajectory we have a possibility to change smoothly the radii of curvature in a
large range of values q 2 h0,1). Two ranges of the curvature radii have been considered in the illustrative
examples. Fig. 14 presents the trajectory for the small range of the radii q, i.e., from 0.053 m to 0.57 m. The
trajectory shown in Fig. 16 corresponds to the large range of the radii q, from 0.094 m to 5.77 m. According
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to Eq. (126), the friction coefficient lka depends on the second power of the sliding trajectory curvature
(1/q2). Therefore, the friction coefficient lka is plotted as a ‘‘soft’’ function of q in the case of the small range
of the curvature radii, see Fig. 15. The coefficient lka is seen as a ‘‘rapid’’ function of q in the case of the large
range of the radii, see Fig. 17.

In the physical terms, it can be interpreted as follows, the friction coefficient lka modifies its value imme-
diately after the sliding starts. There is the rapid transition of the friction coefficient from the initial value to
the final value. Fig. 15 illustrates the case when the surface microstructure evolves, and the friction coeffi-
cient increases as the curvature radius also increases. Fig. 17 presents the case when the modification of the
surface microstructure leads to decreasing of the friction coefficient.

The constraint force normal to the sliding path (i.e., the gyroscopic type component) can change the
shape of the sliding trajectory, see detailed discussion in Zmitrowicz (1999a,b).
9. Higher-order descriptions of anisotropic and heterogeneous friction

The friction force function (6) in the most general case can be given with the aid of the following
polynomial:
t ¼ �N C1vþ C2 � ðv3Þ þ � � � þ Cn � ðv2n�1Þ þ E1n
1

q
þ E2 � ðv2; nÞ 1

q
þ � � � þ ðv; n2Þ 1

q2
þ � � � þ ðn3Þ 1

q3

� ��

þ � � � þ En � ðv2n�2; nÞ 1

q
þ � � � þ ðv2n�3; n2Þ 1

q2
þ � � � þ ðn2n�1Þ 1

q2n�1

� ��
ð151Þ
and with the following notation of the odd order tensors as the independent variables:
ðvp; nqÞ 1

qq
� ðv� � � � � v|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

p copies

� n� � � � � n|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
q copies

Þ 1

qq
; p ¼ 0; 1; . . . ; 2n� 1; q ¼ 0; 1; . . . ; 2n� 1; ð152Þ
where p + q = 3,5, . . ., 2n � 1, it is an odd number. Therefore, the higher-order terms in Eq. (151) are con-
tractions of the following tensors:
Cn � ðv2n�1Þ � Cn � ðv� v� � � � � vÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
2n�1 copies

; ð153Þ

En � ðv2n�2; nÞ 1

q
� En � ðv� � � � � v|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

2n�2 copies

� nÞ 1

q
; ð154Þ

En � ðv2n�3; n2Þ 1

q2
� En � ðv� � � � � v|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

2n�3 copies

� n� nÞ 1

q2
; ð155Þ

En � ðn2n�1Þ 1

q2n�1
� En � ðn� n� � � � � nÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

2n�1 copies

1

q2n�1
. ð156Þ
The friction equation in polynomial form as shown in (151) contains terms which are contractions of the
friction tensors Ci, Ei (i = 1, . . .,n) and the tensors composed by v and n/q. Initially, the tensors composed
by v and n/q of all orders, i.e., first, second, third, . . ., 2n, are taken into account in the polynomial. Accord-
ing to the objectivity axiom only odd terms composed by v and n/q may be included in the polynomial, i.e.,
first, third, . . ., 2n � 1. The friction tensors Ci, Ei are of even order. This way, the polynomial (151) is defined
uniquely.
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Tensors of coefficients of the constitutive equation (151) are described as follows:
CnðXÞ ¼ Cij���s ki � kj � � � � � ks|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2n copies

; i; j; . . . ; s ¼ 1; 2; Cij���s ¼ const; ki ¼ kiðXÞ;

Cn 2T2n ¼ E2 � � � � � E2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
2n copies

; ð157Þ

En ¼ Eij���s ei � ej � � � � � es|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
2n copies

; Eij���s 6¼ const; fe1; e2g � fv; ng; En 2T2n. ð158Þ
Higher-order tensors C1,C2, . . . ,Cn in the constitutive polynomial define other types of frictional anisot-
ropy and inhomogeneity. Tensors E1,E2, . . . ,En describe the additional resistance to sliding and the motion
constraints which depend on an arbitrary power of the sliding path curvature (1/qk, k = 1, . . ., 2n�1).

Property. The friction tensors C1,C2, . . . ,Cn describe the frictional anisotropy and symmetries of the friction

force component t0 given in the higher-order descriptions.

Let us decompose the friction force (151) into two components t0 and tq, in the similar way as it is given
in (99). Due to the polynomial character of the constitutive relation (151), the symmetry group of the fric-
tion force component t0 is an intersection of the symmetry groups of the friction tensors C1,C2, . . . ,Cn, i.e.,
Gðt0Þ ¼ GðC1;C2; . . . ;CnÞ ¼ GðC1Þ \ GðC2Þ \ � � � \ GðCnÞ; ð159Þ

where
GðCiÞ ¼ R : R 2 O; �
2i

1
R

� �
� Ci ¼ Ci

� �
; i ¼ 1; . . . ; n; ð160Þ

�
2i

1
R

� �
� Ci � Cjl���s Rkj � Rkl � � � � � Rks|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2i copies

. ð161Þ
Hence, the symmetry group Gðt0Þ of the friction force component t0 is given by the set of all orthogonal
tensors R for which the following identity holds:
t0 ¼ �N �
2

1
R

� �
� C1

� �
vþ �

4

1
R

� �
� C2

� �
� ðv3Þ þ � � � þ �

2n

1
R

� �
� Cn

� �
� v2n�1
	 
� �

¼ �NfC1vþ C2 � ðv3Þ þ � � � þ Cn � ðv2n�1Þg. ð162Þ
10. Other restrictions on the constitutive models

As in the continuum mechanics and thermodynamics, mathematical restrictions on the form of the fric-
tion constitutive relations arise from two axioms: (a) the material objectivity, (b) the entropy production
inequality. Notice, that to provide a mathematically effective description sometimes additional mathemat-
ical restrictions on the friction models arise in solution procedures of boundary-value problems. In partic-
ular cases, the restrictions are related with questions of existence and uniqueness of solutions, which may
place some limits, e.g., on values of the friction coefficients, see Nečas et al. (1980) and Cocu (1984).

In the continuum mechanics, restrictions on the form of the constitutive equations for materials arise
from representation theorems (Smith, 1994) and Curie principle (Rychlewski, 1991). The representation
theorems express the condition that constitutive laws are invariant with respect to the orthogonal transfor-
mations of the reference system. The friction force equations proposed in this study are polynomial
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vector-valued functions, and the scalars (N,q) and the unit vectors (v,n) are independent variables. In this
case, the representation theorems are satisfied. The Curie principle postulates that an ‘‘effect’’ has at least so
many elements of symmetry as a ‘‘macroscopic cause’’ and a ‘‘physical law’’, which it produces. In the pro-
posed polynomial friction equations, the friction force vector is the ‘‘effect’’, the independent variables of
the friction equation are the ‘‘cause’’ and the polynomial functions are the ‘‘physical law’’. The Curie prin-
ciple is satisfied, see detailed analysis of the symmetry properties.
11. Conclusions

(a) Nowadays a large body of engineering literature is devoted to the experimental observations of aniso-
tropic and non-homogeneous friction and wear. The results of measurements depend on the type of
material observed. The important point is the evolving microstructure in the sliding surfaces of some
materials (polymers, layer-lattice materials, beryllium, magnesium) caused by the kinematics of slid-
ing, i.e., the sliding path curvature. Attempts to explain experimental results are a source of inspira-
tion to theoretical modelling of kinematics dependent friction and wear.

(b) The first-, second- and higher-order descriptions of non-homogeneous anisotropic friction are pre-
sented in this study. The sliding path curvature effects are included in the friction models. Various
powers of the sliding path curvature are taken into account in the second- and higher-order friction
equations.

(c) All friction constitutive equations satisfy the axiom of objectivity. The restrictions on the parameters
of the equations follow from the axiom of entropy production. The symmetry groups are applied to
obtain the mathematical classifications of friction anisotropies.

(d) The sliding path curvature generates the additional resistance to sliding (the dissipative type force). It
can induce positive and negative additional friction, and it describes evolving friction. Furthermore,
the sliding path curvature generates the constraint force normal to the sliding path (the gyroscopic
type force).

(e) In this study, two types of anisotropic and non-homogeneous friction properties are considered in
detail: (i) when the friction properties form (in geometrical terms) concentric circles in the sliding sur-
face, (ii) when the friction properties form Archimedes spirals in the surface.

(f) The first-order models given in our previous studies (Zmitrowicz, 1999a,b) are completed with
descriptions of friction asymmetry and the composition of different surfaces. The additive law of
the composition defines inhomogeneity and anisotropy effects induced at the contact of two different
surfaces.

(g) The constitutive equation governing wear and dependent on the sliding path curvature is created in
the frame of Archard law. The parameters of the first-order models of friction and wear are estimated
with the aid of Briscoe and Stolarski test data. The agreement between experimental data and the
results generated by the models is very good.

The detailed analysis of anisotropic and heterogenous friction leads to the recognition and understand-
ing of physical processes. Understanding and controlling friction and wear are of considerable practical
importance in technology. For instance, turbine blades made with shroud ring segments at their tips
may be grouped into assemblies. Zmitrowicz (1981, 1999c) investigated vibrations of the blade assemblies
with dry friction at the contact between shroud segments. Vibration excitations caused by friction were
examined in numerical tests by a finite element method. The anisotropic friction force created during vibra-
tions of the blade assemblies was inclined to the sliding direction, and a coupling of vibrations due to
frictional anisotropy was observed.
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